Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 32, 2020
Previous Article Next Article

Soft granular particles sheared at a controlled volume: rate-dependent dynamics and the solid–fluid transition

Author affiliations

Abstract

We study the responses of fluid-immersed soft hydrogel spheres that are sheared under controlled volume fractions. Slippery, deformable particles along with the density-matched interstitial fluid are sandwiched between two opposing rough cones, allowing studies for a wide range of volume fraction ϕ both above and below the jamming of granular suspension. We utilize sudden cessations of shearing, accompanied by refraction-matched internal imaging, to supplement the conventional flow-curve measurements. At sufficiently high volume fractions, the settling of particles after the cessations exhibits a continuous yet distinct transition over the change of the shear rate. Such changes back out the qualitative difference in the state of flowing prior to the cessations: the quasi-static yielding of a tightly packed network, as opposed to the rapid sliding of particles mediated by the interstitial fluid whose dynamics depends on the driving rate. In addition, we determine the solid–fluid transition using two independent methods: the extrapolation of stress residues and the estimated yield stress from high values of ϕ, and the settling of particles upon shear cessations as ϕ goes across the transition. We also verify the power law on values of characteristic stress with respect to the distance from jamming ϕϕc, with an exponent close to 2. These results demonstrate a multitude of relaxation timescales behind the dynamics of soft particles, and raise questions on how we extend the existing paradigms of the flow of a densely packed system when the softness is actively involved.

Graphical abstract: Soft granular particles sheared at a controlled volume: rate-dependent dynamics and the solid–fluid transition

Back to tab navigation

Article information


Submitted
07 Mar 2020
Accepted
03 Jul 2020
First published
21 Jul 2020

This article is Open Access

Soft Matter, 2020,16, 7535-7543
Article type
Paper

Soft granular particles sheared at a controlled volume: rate-dependent dynamics and the solid–fluid transition

J.-C. Tsai, M.-R. Chou, P.-C. Huang, H.-T. Fei and J.-R. Huang, Soft Matter, 2020, 16, 7535
DOI: 10.1039/D0SM00405G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements