Issue 28, 2019

The capillary interaction between pairs of granular rafts

Abstract

When an object is placed at the surface of a liquid, its weight deforms the interface. For two identical spherical objects, such a deformation creates an attractive force, leading to the aggregation of the two-body system. Here, we experimentally investigate the interaction between two granular rafts, formed by the aggregation of dense millimeter-sized beads placed at an oil–water interface. The interfacial deformation created by such a two-dimensional object exceeds by at least an order of magnitude the deformation of a single bead. This leads to unusually high capillary forces which strongly depend on the number of particles. Likewise, because the raft grows in size as more particles are added, the viscous drag experienced increases along with the capillary attraction, leading to a non-trivial dependence of the balance of forces on the number of beads. By studying the relative motion of two granular rafts in relation with the interfacial deformation they generate, we derive a model for the observed speed profiles. With this work, we generalize how the capillary interaction between two non-identical complex structures evolves with their respective geometry.

Graphical abstract: The capillary interaction between pairs of granular rafts

Supplementary files

Article information

Article type
Paper
Submitted
06 Mar 2019
Accepted
24 Jun 2019
First published
25 Jun 2019

Soft Matter, 2019,15, 5695-5702

The capillary interaction between pairs of granular rafts

A. Lagarde, C. Josserand and S. Protière, Soft Matter, 2019, 15, 5695 DOI: 10.1039/C9SM00476A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements