Issue 44, 2018

The evolution of crystalline structures during gel spinning of ultra-high molecular weight polyethylene fibers

Abstract

Most studies are focused on the final mechanical properties of the fiber and the processing window required to achieve high moduli and tensile strength. Several studies have alluded to the fact that the crystalline morphologies developed during gel spinning and post-drawing are very important in determining the final mechanical properties. However, it is surprising to know that no clear correlation exists between the crystalline structure and initial, evolving, and final mechanical properties. In an attempt to define structure–property relationships, we have developed novel tools to quantify the effect of processing on crystalline structure evolution. We examine through controlled gel-spinning and SAXS analysis the effect of flow kinematics on the development of crystalline structures. Direct correlations are made between polymer solution relaxation time, extension rates, crystallization time and gel-spun crystalline morphologies. We report direct evidence of flow induced crystallization, which approaches an asymptotic crystallization rate at high Weissenberg numbers. For Wi < 1, the crystalline structure is only slightly affected by equilibrium. For Wi > 1, the crystalline structure is highly anisotropic due to chain orientation/stretch during spinning. Fibers spun at different Weissenberg numbers are drawn to low draw ratios at constant temperature to measure the initial structure evolution. A qualitative SAXS analysis clearly shows similar evolution of different starting structures with the formation of more straight chain crystals upon drawing. However, there remain quantitative differences between the length of straight chain crystals and the size and distribution of lamellar domains depending on the starting structure.

Graphical abstract: The evolution of crystalline structures during gel spinning of ultra-high molecular weight polyethylene fibers

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2018
Accepted
04 Oct 2018
First published
11 Oct 2018

Soft Matter, 2018,14, 8974-8985

Author version available

The evolution of crystalline structures during gel spinning of ultra-high molecular weight polyethylene fibers

C. K. Henry, G. R. Palmese and N. J. Alvarez, Soft Matter, 2018, 14, 8974 DOI: 10.1039/C8SM01597J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements