Issue 48, 2018

Failure mechanisms of coiling fibers with sacrificial bonds made by instability-assisted fused deposition modeling

Abstract

Instability-assisted 3D printing is a method for producing microstructured fibers with sacrificial bonds and hidden lengths that mimic nature's toughening mechanisms found in spider silk. This hierarchical structure increases the effective toughness of poly(lactic acid) (PLA) fibers by 240–340% in some specimens. Nevertheless, many specimens show worse toughness as low as 25% of that of the benchmark straight fiber due to the incomplete release of hidden lengths caused by premature failures. Here, we report the mechanical tests and simulations of microstructured fibers with coiling loops that identify the material plastic deformation as being crucial to fully release the hidden lengths. Without sufficient material yielding, high local tensile stress results from the bending-torsion–tension coupled deformation of the coiling loop and induces crack initiation at the fiber backbone during the loop unfolding process. On the other hand, the influence of bond-breaking defects is found to be negligible here. Moreover, for a number of broken bonds beyond a critical value, the accumulated elastic energy along the released loops induces a high strain rate (∼1500 mm mm−1 s−1) in a quasi-static tensile test, which fractures the fiber backbone within 0.1 ms after the breaking of a new bond. We also show a size effect in fused deposition modeling (FDM) extruded PLA fibers, which results in a higher effective toughness (∼5 times the performance of the straight fiber benchmark) in small coiling fibers (dia. = 0.37 mm), due to the better ductility in bending and torsion compared to large fibers (dia. = 1.20 mm). The failure mechanisms of single microstructured fibers presented here lay the groundwork for further optimizations of fiber arrays in the next generation of high energy-absorption composites for impact protection and safety-critical applications.

Graphical abstract: Failure mechanisms of coiling fibers with sacrificial bonds made by instability-assisted fused deposition modeling

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2018
Accepted
02 Nov 2018
First published
02 Nov 2018

Soft Matter, 2018,14, 9777-9785

Failure mechanisms of coiling fibers with sacrificial bonds made by instability-assisted fused deposition modeling

S. Zou, D. Therriault and F. P. Gosselin, Soft Matter, 2018, 14, 9777 DOI: 10.1039/C8SM01589A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements