Issue 36, 2018

Flexibility of nanolayers and stacks: implications in the nanostructuration of clays

Abstract

The basic structural units of adsorbing microporous materials such as clays and cementitious materials are flexible nanolayers. The flexibility of these layers is reported to play a crucial role in the structuration of these materials, potentially affecting therefore the thermo-mechanical behavior of such materials. Adsorbed fluids are structured in a discrete number of layers within the space between the nanolayers in these materials. This discrete nature of adsorption states may lead to micro-instabilities due to non-convex energy profiles. The transition between adsorption states may involve the bending of layers. Bending contributes to metastability, which is reported to be a potential source of the irreversibilities notably in clay behavior. In this paper, we determine the bending modulus of clay nanolayers by the combination of plate theory with molecular simulations of sodium montmorillonite. The case of clays is illustrative of the behavior of phyllosilicates (i.e. sheet-silicates) which are ubiquitous minerals in the Earth's crust. We discuss the conditions in which clay particles, i.e. a stack of nanolayers, can be viewed as thin plates. Estimations of the bending modulus according to the hydration state and dimensions of clay particles are provided. We analyze the implications of the flexibility of the layers in the behavior of a stack of layers as well as in the transitions between adsorption states. The energy barrier associated with bending of clay layers and the characteristic length of bending in such transitions are provided. Our results contribute to a better understanding of the nanostructure of layered adsorbing materials.

Graphical abstract: Flexibility of nanolayers and stacks: implications in the nanostructuration of clays

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2018
Accepted
28 Aug 2018
First published
29 Aug 2018

Soft Matter, 2018,14, 7354-7367

Flexibility of nanolayers and stacks: implications in the nanostructuration of clays

T. Honorio, L. Brochard, M. Vandamme and A. Lebée, Soft Matter, 2018, 14, 7354 DOI: 10.1039/C8SM01359D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements