Issue 38, 2018

Accurate estimation of the polymer coverage of hairy nanoparticles

Abstract

Understanding and predicting the mechanisms underpinning the self-assembly of polymer-grafted nanoparticles (PGNPs) are important for controlling the engineering applications of these novel materials. The self-assembly of these materials is driven by their surfactancy, i.e., by the fact that the (inorganic) nanoparticles energetically dislike the (organic) polymer tethers. In previous work we developed a model in which a grafted polymer chain was treated as a rigid equivalent sphere (ES) which was impenetrable to the NPs, but completely penetrable to other ESs. This description, along with a geometric analogy with patchy particles, allowed us to facilely explain the self-assembly of PGNPs. However, since we model an ES as being completely penetrable to other ESs but impenetrable to the NPs the physical correspondence between a “real” grafted polymer and an ES is not clear. The application of the ES model to experiments and to computer simulations has therefore seen limited success, and only qualitative agreement has been obtained. In this paper, we develop a more realistic description, termed the modified ES (mES) model, based on the work of Daoud and Cotton on curved polymer brushes, which takes the impenetrability of the individual chain monomers into account. While this approach increases the complexity of our formalism, we find that the resulting mES model quantitatively captures computer simulation results on the structure of the PGNPs and also quantitatively explains their self-assembly over a broad range of conditions.

Graphical abstract: Accurate estimation of the polymer coverage of hairy nanoparticles

Article information

Article type
Paper
Submitted
27 Jun 2018
Accepted
04 Sep 2018
First published
04 Sep 2018

Soft Matter, 2018,14, 7906-7915

Author version available

Accurate estimation of the polymer coverage of hairy nanoparticles

M. Asai, D. Zhao and S. K. Kumar, Soft Matter, 2018, 14, 7906 DOI: 10.1039/C8SM01311J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements