Issue 33, 2018

Self-assembly of semiflexible polymers confined to thin spherical shells

Abstract

Confinement effects are critical for stiff macromolecules in biological cells, vesicles, and other systems in soft matter. For these molecules, the competition between the packing entropy and the enthalpic cost of bending is further shaped by strong confinement effects. Through coarse-grained molecular dynamics simulations, we explore the self-assembly of semiflexible polymers confined in thin spherical shells for various chain lengths, chain stiffnesses, and shell thicknesses. Here, we focus on the case where the contour and persistence length of the polymers are comparable to the radius of the confining cavity. The range of ordered structures is analyzed using several order parameters to elucidate the nature of orientational ordering in different parameter regimes. Previous simulations have revealed the emergence of bipolar and quadrupolar topological defects on the surface when the entire cavity was filled with a concentrated polymer solution [Phys. Rev. Lett., 2017, 118, 217803]. In contrast, spherical shell confinement restricts the appearance of a bipolar order. Instead, only the extent of the quadrupolar order changes with chain stiffness, as evidenced by the relative motion of topological defects. In the case of monolayers, we observe a nematic to smectic transition accompanied by a change in the nematic grain-size distribution as the contour length was decreased.

Graphical abstract: Self-assembly of semiflexible polymers confined to thin spherical shells

Article information

Article type
Paper
Submitted
07 Jun 2018
Accepted
25 Jul 2018
First published
26 Jul 2018

Soft Matter, 2018,14, 6903-6911

Self-assembly of semiflexible polymers confined to thin spherical shells

M. R. Khadilkar and A. Nikoubashman, Soft Matter, 2018, 14, 6903 DOI: 10.1039/C8SM01170B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements