Issue 37, 2018

Meniscus instabilities in thin elastic layers

Abstract

We consider meniscus instabilities in thin elastic layers perfectly adhered to, and confined between, much stiffer bodies. When the free boundary associated with the meniscus of the elastic layer recedes into the layer, for example by pulling the stiffer bodies apart or injecting air between them, then the meniscus will eventually undergo a purely elastic instability in which fingers of air invade the layer. Here we show that the form of this instability is identical in a range of different loading conditions, provided only that the thickness of the meniscus, a, is small compared to the in-plane dimensions and to two emergent in-plane length scales that arise if the substrate is soft or if the layer is compressible. In all such situations, we predict that the instability will occur when the meniscus has receded by approximately 1.27a, and that the instability will have wavelength λ ≈ 2.75a. We illustrate this by also calculating the threshold for fingering in a thin wedge of elastic material bonded to two rigid plates that are pried apart, and the threshold for fingering when a flexible plate is peeled from an elastic layer that glues the plate to a rigid substrate.

Graphical abstract: Meniscus instabilities in thin elastic layers

Article information

Article type
Paper
Submitted
19 May 2018
Accepted
30 Aug 2018
First published
19 Sep 2018

Soft Matter, 2018,14, 7680-7689

Meniscus instabilities in thin elastic layers

J. S. Biggins and L. Mahadevan, Soft Matter, 2018, 14, 7680 DOI: 10.1039/C8SM01033A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements