Issue 18, 2018

Sonocrystallization of poly(3-hexylthiophene) in a marginal solvent

Abstract

The application of ultrasonication to P3HT in anisole can dramatically affect the crystallization of P3HT. The ultrasonication conditions were modulated by varying the ultrasonication time, ultrasonication power and ultrasonication temperature. Ultrasonicating at the dissolution temperature (85 °C) causes the concentration of the P3HT solution to fluctuate. When fixing the ultrasonication power at 100 W and ultrasonication time at 3 min, for P3HT crystallized in solution at 16 °C, the crystallization kinetics of ultrasonicated P3HT is slower than that of pristine P3HT. The nanofiber aggregation density and crystallinity of ultrasonicated P3HT are lower than those of pristine P3HT, and the nanofiber aggregation size is larger. For P3HT crystallized in solution at 20 °C, the crystallization kinetics, nanofiber morphology and crystallinity of ultrasonicated P3HT are similar to those of pristine P3HT. For P3HT crystallized in solution at 26 °C, the crystallization kinetics of ultrasonicated P3HT is faster than that of pristine P3HT, the nanofiber aggregation size is larger, and the crystallinity is higher. Fixing the crystallization temperature at 16 °C and varying the ultrasonication time and ultrasonication power can effectively modulate the crystallization kinetics of P3HT. When the P3HT solution is ultrasonicated at the crystallization temperature (16 °C), in addition to fluctuations in the concentration, ultrasonication promotes the disentanglement of P3HT chains. The combination of the two effects of ultrasonication is more beneficial for the crystallization of P3HT when solvophobic forces exist in a marginal solvent.

Graphical abstract: Sonocrystallization of poly(3-hexylthiophene) in a marginal solvent

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2018
Accepted
29 Mar 2018
First published
04 Apr 2018

Soft Matter, 2018,14, 3590-3600

Sonocrystallization of poly(3-hexylthiophene) in a marginal solvent

X. Zhang, Y. Liu, X. Ma, H. Deng, Y. Zheng, F. Liu, J. Zhou, L. Li and H. Huo, Soft Matter, 2018, 14, 3590 DOI: 10.1039/C8SM00142A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements