Issue 11, 2018

Solid-phase nucleation free-energy barriers in truncated cubes: interplay of localized orientational order and facet alignment

Abstract

The nucleation of ordered phases from the bulk isotropic phase of octahedron-like particles has been studied via Monte Carlo simulations and umbrella sampling. In particular, selected shapes that form ordered (plastic) phases with various symmetries (cubic and tetragonal) are chosen to unveil trends in the free-energy barrier heights (ΔG*'s) associated with disorder to order transitions. The shapes studied in this work have truncation parameter (s) values of 0.58, 0.75, 0.8 and 1. The case of octahedra (s = 1.0) is studied to provide a counter-example where the isotropic phase nucleates directly into a (Minkowski) crystal phase rather than a rotator phase. The simulated ΔG*'s for these systems are compared with those previously reported for hard spheres and truncated cubes with s = 0.5 (cuboctahedra, CO) and s = 2/3 (truncated octahedra, TO). The comparison shows that, for comparable degrees of supersaturation, all rotator phases nucleate with smaller ΔG*'s than that of the hard sphere crystal, whereas the octahedral crystal nucleates with a larger ΔG*. Our analysis of near-critical translationally ordered nuclei of octahedra shows a strong bias towards an orientational alignment which is incompatible with the tendency to form facet-to-facet contacts in the disordered phase, thus creating an additional entropic penalty for crystallization. For rotator phases of octahedra-like particles, we observe that the strength of the localized orientational order correlates inversely with ΔG*. We also observe that for s > 0.66 shapes and similar to octahedra, configurations with high facet alignment do not favor high orientational order, and thus ΔG*'s increase with truncation.

Graphical abstract: Solid-phase nucleation free-energy barriers in truncated cubes: interplay of localized orientational order and facet alignment

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2017
Accepted
23 Jan 2018
First published
23 Jan 2018

Soft Matter, 2018,14, 1996-2005

Solid-phase nucleation free-energy barriers in truncated cubes: interplay of localized orientational order and facet alignment

A. K. Sharma, V. Thapar and F. A. Escobedo, Soft Matter, 2018, 14, 1996 DOI: 10.1039/C7SM02377D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements