Issue 8, 2018

Dynamics of a colloidal particle near a thermoosmotic wall under illumination

Abstract

The effects of light on colloidal particles in solution are multiple, including transfer of photonic linear/angular momentum and heating of the particles or their surroundings. The temperature increase around colloidal particles due to light heating can drive a thermoosmotic flow along a nearby boundary wall, which significantly influences the motion of the particles. Here we perform mesoscopic dynamics simulations to study two typical scenarios, where thermoosmosis is critical. In the first scenario, we consider a light-absorbing colloidal particle heated by uniform illumination. Depending on the fluid–wall interactions, the thermoosmotic flow generated by the wall can exert a long-ranged hydrodynamic attraction or repulsion on the “hot” Brownian particle, which leads to a strong accumulation/depletion of the particle to/from the boundary. In the second scenario, we investigate the motion of a colloidal particle confined by an optical tweezer in a light-absorbing solution. In this case, thermoosmosis can induce a unidirectional rotation of the trapped particle, whose direction is determined by thermoosmotic properties of the wall. We show that colloidal particles near a thermoosmotic wall exhibit rich dynamics. Our results can be applied for the manipulation of colloidal particles in microfluidics.

Graphical abstract: Dynamics of a colloidal particle near a thermoosmotic wall under illumination

Article information

Article type
Paper
Submitted
08 Nov 2017
Accepted
10 Jan 2018
First published
11 Jan 2018

Soft Matter, 2018,14, 1319-1326

Dynamics of a colloidal particle near a thermoosmotic wall under illumination

X. Lou, N. Yu, R. Liu, K. Chen and M. Yang, Soft Matter, 2018, 14, 1319 DOI: 10.1039/C7SM02196H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements