Issue 25, 2016

On the origin of vorticity in magnetic particle suspensions subjected to triaxial fields

Abstract

We have recently reported that two classes of time-dependent triaxial magnetic fields can induce vorticity in magnetic particle suspensions. The first class – symmetry-breaking fields – is comprised of two ac components and one dc component. The second class – rational triad fields – is comprised of three ac components. In both cases deterministic vorticity occurs when the ratios of the field frequencies form rational numbers. A strange aspect of these fields is that they produce fluid vorticity without generally having a circulating field vector, such as would occur in a rotating field. It has been shown, however, that the symmetry of the field trajectory, considered jointly with that of the converse field, allows vorticity to occur around one particular field axis. This axis might be any of the field components, and is determined by the relative frequencies of the field components. However, the symmetry theories give absolutely no insight into why vorticity should occur. In this paper we propose a particle-based model of vorticity in these driven fluids. This model proposes that particles form volatile chains that follow, but lag behind, the dynamic field vector. This model is consistent with the predictions of symmetry theory and gives reasonable agreement with previously reported torque density measurements for a variety of triaxial fields.

Graphical abstract: On the origin of vorticity in magnetic particle suspensions subjected to triaxial fields

Article information

Article type
Paper
Submitted
03 Mar 2016
Accepted
22 May 2016
First published
06 Jun 2016

Soft Matter, 2016,12, 5636-5644

On the origin of vorticity in magnetic particle suspensions subjected to triaxial fields

J. E. Martin, Soft Matter, 2016, 12, 5636 DOI: 10.1039/C6SM00557H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements