Issue 45, 2014

Complex magnetic fields breathe life into fluids

Abstract

The vast majority of materials research exploits equilibrium or quasi-equilibrium processes to produce inert materials. In contrast, living systems depend on far-from-equilibrium kinetic processes that require a continuous flux of energy to persist and perform useful tasks. The Greek god Hephaestus forged metal automatons that he miraculously animated to perform the tasks of living creatures. Is something like this actually possible? Here we show that subjecting magnetic fluids suspended in an immiscible liquid to uniform, multidimensional, time-dependent magnetic fields, generates a variety of life-like collective dynamics, including various forms of locomotion, swarming and feeding, that are sustained by the continuous injection of energy via the applied field. These leaderless emergent behaviors occur autonomously, without human guidance, and are quite surprising. Such self-healing, remotely-powered fluid automatons could be used as an extraction/separation technology to efficiently purify water by scavenging toxic chemicals and microorganisms, or alternatively enable the controlled release of chemicals. Other possible applications include vigorous fluid mixing and even microdroplet manipulation for microfluidic bioassays.

Graphical abstract: Complex magnetic fields breathe life into fluids

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2014
Accepted
24 Sep 2014
First published
15 Oct 2014

Soft Matter, 2014,10, 9136-9142

Complex magnetic fields breathe life into fluids

K. J. Solis and J. E. Martin, Soft Matter, 2014, 10, 9136 DOI: 10.1039/C4SM01458H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements