Issue 26, 2014

Supramolecular self-assembly enhanced europium(iii) luminescence under visible light

Abstract

In this paper, we report on the luminescence of europium by directly exciting europium ions with visible light in aqueous medium. Upon replacing all the water molecules that coordinate around a central europium ion with a ditopic ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4), the quenching from water molecules is efficiently eliminated, offering considerable europium emission. By stoichiometrically mixing with a positively charged block polyelectrolyte, the negatively charged L2EO4–Eu coordinating complex can be transformed into a coordination ‘polymer’, which simultaneously forms electrostatic micelles with further enhanced europium fluorescence emission, owing to the increased fraction of L2EO4-coordinated Eu(III) as revealed by the fluorescence lifetime measurements. This approach avoids the use of the antenna effect that often utilizes UV light as the irradiation source. We further use those micelles for bio-imaging, and for the first time demonstrate the use of directly excited Eu-containing nano-probes for in vivo fluorescence imaging in small animals under visible excitation. Although literature results have shown that the direct excitation of europium ions in water may lead to emissions in the presence of coordinating ligands, those emissions were too weak to be applied due to the remaining water molecules in the coordination sphere. Our work points out that the direct excitation of europium can generate considerable europium emission given that all the water molecules in the coordination sphere are excluded, which does not only greatly reduce tedious lab work in synthesizing antenna molecules, but also facilitates the application of europium in aqueous medium under visible light.

Graphical abstract: Supramolecular self-assembly enhanced europium(iii) luminescence under visible light

Article information

Article type
Paper
Submitted
12 Feb 2014
Accepted
07 Apr 2014
First published
07 Apr 2014

Soft Matter, 2014,10, 4686-4693

Supramolecular self-assembly enhanced europium(III) luminescence under visible light

L. Xu, L. Feng, Y. Han, Y. Jing, Z. Xian, Z. Liu, J. Huang and Y. Yan, Soft Matter, 2014, 10, 4686 DOI: 10.1039/C4SM00335G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements