Issue 15, 2014

Temperature controlled shape change of grafted nanofoams

Abstract

We demonstrated that nanoscale-level actuation can be, in principle, achieved with grafted polymer nanofoams by forces associated with conformational changes of stretched macromolecular chains. The nanofoams are fabricated via a two-step procedure. First, the “grafting to” technique is used to obtain a 20–200 nm anchored and cross-linked poly(glycidyl methacrylate) film. Second, the film is swollen in solvent and freeze dried until the solvent is sublimated. The grafted nanofoam possesses the behavior of a shape-memory material, exhibiting gradual mechanical contraction at the nanometer scale as temperature is increased. Both the thickness and shape-recovery ratio of the nanofoam have a close to linear dependency on temperature. We also demonstrated that by modification of the poly(glycidyl methacrylate) nanofoam with grafting low molecular weight polymers, one can tune an absolute nanoscale mechanical response of the porous polymer film.

Graphical abstract: Temperature controlled shape change of grafted nanofoams

Article information

Article type
Paper
Submitted
09 Jan 2014
Accepted
29 Jan 2014
First published
29 Jan 2014

Soft Matter, 2014,10, 2567-2573

Temperature controlled shape change of grafted nanofoams

Y. Galabura, A. P. Soliani, J. Giammarco, B. Zdyrko and I. Luzinov, Soft Matter, 2014, 10, 2567 DOI: 10.1039/C4SM00055B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements