Issue 19, 2014

Modified nanoprecipitation method for polysulfone nanoparticles preparation

Abstract

Towards developing a more universal and productive nanoprecipitation processes, we focus on the preparation of polysulfone (PSF) nanoparticles through instantaneous solvent displacement in a metal membrane contactor between dimethylformamide (DMF) and water. In the original nanoprecipitation process, cubic nuclei can form instantaneously, but slow growth and aggregation have intensive interactions. Moreover, the reservation of DMF may enhance the adhesive effect between polymeric particles, causing severe particle aggregation. To overcome this difficulty, a modified nanoprecipitation method appending a quenching step was proposed. The well-dispersed PSF nanoparticles are successfully obtained when ethyl acetate is introduced. In this way, DMF can be extracted from water solution, thus facilitating the precipitating of PSF. Furthermore, selecting water as the continuous fluid, the particle size can be adjusted simply by tuning the operating parameters, including the PSF concentration in the dispersed fluid and the ratio of two feeds. Compared with previous reports on the continuous nanoprecipitation process for polymeric nanoparticles preparation, this work shows advantages including expanding the adaptability to more functional polymers, providing better flexibility on process or product development independent of the use of surfactant, and presenting a high throughput and easy-to-scale-up equipment platform.

Graphical abstract: Modified nanoprecipitation method for polysulfone nanoparticles preparation

Article information

Article type
Paper
Submitted
30 Nov 2013
Accepted
05 Feb 2014
First published
06 Feb 2014

Soft Matter, 2014,10, 3414-3420

Modified nanoprecipitation method for polysulfone nanoparticles preparation

Y. Liu, Y. C. Lu and G. S. Luo, Soft Matter, 2014, 10, 3414 DOI: 10.1039/C3SM53003E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements