Jump to main content
Jump to site search

Issue 1, 2014
Previous Article Next Article

Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages

Author affiliations

Abstract

Studying dendrimer–biomembrane interactions is important for understanding drug and gene delivery. In this study, coarse-grained molecular dynamics simulations were performed to investigate the behaviors of polyamidoamine (PAMAM) dendrimers (G4 and G5) as they interacted with asymmetric membranes from different sides of the bilayer, thus mimicking different dendrimer transport stages. The G4 dendrimer could insert into the membrane during an equilibrated state, and the G5 dendrimer could induce pore formation in the membrane when the dendrimers interacted with the outer side (outer interactions) of an asymmetric membrane [with 10% dipalmitoyl phosphatidylserine (DPPS) in the inner leaflet of the membrane]. During the interaction with the inner side of the asymmetric membrane (inner interactions), the G4 and G5 dendrimers only adsorbed onto the membrane. As the membrane asymmetry increased (e.g., increased DPPS percentage in the inner leaflet of the membrane), the G4 and G5 dendrimers penetrated deeper into the membrane during the outer interactions and the G4 and G5 dendrimers were adsorbed more tightly onto the membrane for the inner interactions. When the DPPS content reached 50%, the G4 dendrimer could completely penetrate through the membrane from the outer side to the inner side. Our study provides molecular understanding and reference information about different dendrimer transport stages during drug and gene delivery.

Graphical abstract: Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages

Back to tab navigation

Article information


Submitted
22 Jul 2013
Accepted
23 Oct 2013
First published
24 Oct 2013

Soft Matter, 2014,10, 139-148
Article type
Paper

Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages

X. He, Z. Qu, F. Xu, M. Lin, J. Wang, X. Shi and T. Lu, Soft Matter, 2014, 10, 139
DOI: 10.1039/C3SM51990B

Social activity

Search articles by author

Spotlight

Advertisements