Issue 45, 2013

Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds

Abstract

Collagenous body tissues exhibit diverse physicochemical and biomechanical properties depending upon their compositions (e.g. proteins, polysaccharides, minerals and water). These factors influence cell function and can contribute to tissue dysfunction and disease when they are either deficient or present in excess. Similarly, the constituents of tissue engineering hydrogel scaffolds must be carefully considered for the optimal design of engineered constructs for therapeutic applications. As a natural polysaccharide glycosaminoglycan-analog, chitosan (CTS) holds potential for generating highly hydrated collagen type I hydrogel (Coll) based scaffolds that mimic the native extracellular matrix. Analysis of fluid loss in Coll–CTS hydrogels undergoing either a gravity-driven consolidation process (self-compression; SC) or plastic-compression (PC) offers the potential for the controlled production of tissue-equivalent dense hydrogels with tailored physical and mechanical properties. Herein, the effect of CTS on Coll gels microstructural evolution involved in SC and PC was investigated by detecting the spatiotemporal distribution of fluorescent beads within Coll–CTS hydrogels using confocal microscopy. The hydraulic permeability (k), pre- and post-consolidation, as a function of CTS content, was estimated by the Happel model. The effect of CTS fixed charge on dense Coll–CTS hydrogels was investigated through structural, mechanical and swelling characterizations under isotonic and hypertonic conditions. Image analysis revealed a temporal increase in bead density, with both rate and extent of consolidation, correlating strongly with increasing CTS content. k decreased from 1.4 × 10−12 to 1.8 × 10−13 m2 and from 2.9 × 10−14 to 6.8 × 10−15 m2 for highly hydrated and dense hydrogels, respectively, with higher amount of CTS, resulting in a concomitant increase in the scaffold compressive modulus (from 7.65 to 14.89 kPa). In summary, understanding the effect of CTS on Coll hydrogel properties enables the development of tailored scaffolds for use as tissue models for various biomedical applications.

Graphical abstract: Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds

Article information

Article type
Paper
Submitted
12 Aug 2013
Accepted
20 Sep 2013
First published
25 Sep 2013
This article is Open Access
Creative Commons BY license

Soft Matter, 2013,9, 10811-10821

Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds

F. Chicatun, N. Muja, V. Serpooshan, T. M. Quinn and S. N. Nazhat, Soft Matter, 2013, 9, 10811 DOI: 10.1039/C3SM52176A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements