Issue 25, 2013

Measuring the surface tension of yield stress fluids

Abstract

With the aim of studying the impact of capillary forces on the flow of yield stress fluids we investigate the properties of a film formed by withdrawing a blade from a bath of such a material. We show that before a progressive breakage of the film, the force amplitude reaches a maximum which is independent of the initial depth of penetration and the timing for blade lifting, but increases with the material yield stress and the blade thickness. This critical force is shown to reflect both capillary and viscous effects, even at vanishing blade velocity. We demonstrate that the ratio of this force to the blade perimeter provides the surface tension of the yield stress fluid in the limit of a low (≪1) capillary number (ratio of yield stress times the blade thickness to surface tension). Moreover we show that all our data for the force to perimeter ratio fall along a master curve which may be used to deduce the surface tension from measurements obtained at a capillary number up to 1, even if viscous effects are significant. Finally Carbopol gels appear to have almost the same value of surface tension whatever their yield stress, but this value is almost 10% smaller than that of pure water.

Graphical abstract: Measuring the surface tension of yield stress fluids

Article information

Article type
Paper
Submitted
22 Feb 2013
Accepted
25 Apr 2013
First published
20 May 2013

Soft Matter, 2013,9, 5898-5908

Measuring the surface tension of yield stress fluids

J. Boujlel and P. Coussot, Soft Matter, 2013, 9, 5898 DOI: 10.1039/C3SM50551K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements