Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 34, 2013
Previous Article Next Article

Defect science and engineering of liquid crystals under geometrical frustration

Author affiliations

Abstract

Spontaneous symmetry breaking while preserving flow ability is a remarkable feature of nematic liquid crystals. When a nematic liquid crystal coexists with a solid, the surface field of the solid tends to anchor the director direction on the surface: anchoring effects. If geometrical frustration between nematic ordering and anchoring is strong enough, stable topological defects are formed. Defects in an ordered state are usually regarded as undesirable features. However, recent studies reveal that defects stabilized by a topological constraint from the solid surfaces are actually quite useful and open up novel possibilities for defect engineering of liquid crystals: self-organization of soft matter by defects, memory effects of topological origin, and control of flow of nematic liquid crystals and colloid motion by defects. For example, defect reconfiguration accompanying the change in the topology costs a very high energy far beyond the thermal energy, which overwhelms a typical energy scale in soft matter. This provides extreme stability for structures assembled by defects and information memorized in defect topology. Furthermore, effects of topological defects can easily be removed perfectly by a nematic-to-isotropic transition, which provides switchable functions. Defects also affect the motion of colloids immersed in a liquid crystal and flow behaviour of a liquid crystal. Here we review recent developments in science and engineering of topological defects in nematic liquid crystals, mainly based on our numerical simulation studies.

Graphical abstract: Defect science and engineering of liquid crystals under geometrical frustration

Back to tab navigation

Article information


Submitted
14 Feb 2013
Accepted
08 Apr 2013
First published
08 May 2013

This article is Open Access

Soft Matter, 2013,9, 8107-8120
Article type
Review Article

Defect science and engineering of liquid crystals under geometrical frustration

T. Araki, F. Serra and H. Tanaka, Soft Matter, 2013, 9, 8107
DOI: 10.1039/C3SM50468A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements