Jump to main content
Jump to site search

Issue 37, 2012
Previous Article Next Article

Monte Carlo simulations of a clay inspired model suspension: the role of rim charge

Author affiliations

Abstract

We present a theoretical investigation of a model clay dispersion in 1-1 salt solutions by varying the particle volume fraction and ionic strength as well as the charge distribution on the clay platelets. The platelets are modeled as discs with charged sites distributed on a hexagonal lattice. The edge sites can be positively charged while the remaining sites are negative giving rise to a strong charge anisotropy. Simulations are carried out using a Monte Carlo method in the canonical ensemble. The interactions between the platelet sites are described with a screened Coulomb potential plus a short range repulsive potential. Simulations show a complex phase behavior. When the charge anisotropy is strong, i.e. all edge sites are positively charged, a fluid phase dominated by repulsion is found at low volume fraction and ionic strength. When increasing the latter an attractive liquid phase forms. At these volume fractions the platelets aggregate in an “Overlapping Coins” configuration. With increasing volume fraction the dispersion becomes unstable and the pressure goes through a van der Waals loop. A liquid crystalline phase, Smectic B, forms in the thermodynamically unstable region. On the other side of the van der Waals loop a stable gel phase is found. A phase separation between a fluid and a gel is thus predicted. The threshold value of the volume fraction at which the phase separation occurs is found to increase with the salt concentration. The gel structure is a mixture of “Overlapping Coins” and “House of Cards” configurations. When the charge anisotropy is intermediate, no phase separation occurs. Instead, a gel forms from a sol of clusters of individual particles randomly oriented that progressively grow with the volume fraction. These results are discussed in light of experimental observations on clay suspensions.

Graphical abstract: Monte Carlo simulations of a clay inspired model suspension: the role of rim charge

Back to tab navigation

Article information


Submitted
29 Mar 2012
Accepted
04 Jul 2012
First published
09 Aug 2012

Soft Matter, 2012,8, 9691-9704
Article type
Paper

Monte Carlo simulations of a clay inspired model suspension: the role of rim charge

M. Delhorme, B. Jönsson and C. Labbez, Soft Matter, 2012, 8, 9691 DOI: 10.1039/C2SM25731A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements