Issue 24, 2012

Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity

Abstract

The tracer diffusion of deuterated polystyrene (dPS) is measured in a polystyrene nanocomposite containing silica nanoparticles (NPs), with number average diameters dn of 28.8 nm and 12.8 nm, using elastic recoil detection. The volume fractions of the large and small NPs (ϕNP) range from 0 to 0.5, and 0 to 0.1, respectively. At the same volume fraction of NPs, the tracer diffusion of dPS is reduced as NP size decreases because the interparticle distance between NPs (ID) decreases. The reduced diffusion coefficient, defined as the tracer diffusion coefficient in the nanocomposite relative to pure PS (D/D0), plotted against the confinement parameter, namely ID(dn) relative to tracer size, ID(dn)/2Rg, nearly collapses onto a master curve, although D/D0 is slightly greater for the more polydisperse, smaller NPs. Using a log normal distribution of NP size from SAXS, the average ID of the smaller NPs is shown to increase by 25% at ϕNP = 0.1 as polydispersity (σ) increases from 1 to 1.39. By accounting for polydispersity, the confinement parameter better represents the effect of NP spacing on polymer diffusion. These experiments demonstrate that polymer tracer diffusion in polymer nanocomposites is empirically captured by the confinement parameter and that an increase in the average ID due to NP polydispersity has a secondary effect on model NP systems with a narrow distribution of sizes. However, for commercial systems, where polydispersity can be quite large, the effect of size distribution can significantly increase ID which in turn will influence polymer dynamics.

Graphical abstract: Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity

Article information

Article type
Paper
Submitted
05 Feb 2012
Accepted
26 Apr 2012
First published
14 May 2012

Soft Matter, 2012,8, 6512-6520

Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity

S. Gam, J. S. Meth, S. G. Zane, C. Chi, B. A. Wood, K. I. Winey, N. Clarke and R. J. Composto, Soft Matter, 2012, 8, 6512 DOI: 10.1039/C2SM25269D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements