Issue 14, 2010

Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology

Abstract

Blending of two or more immiscible polymers is an attractive route to generate new materials. However, during processing in the liquid state, the flow-induced microstructure changes continuously due to a complex interplay between break-up and coalescence, typically resulting in a coarse morphology with poor properties. Hence, the need to generate and stabilize a fine morphology is obvious and block copolymers are typically used as compatibilizers. The use of nanoparticles has been suggested to be an alternative to ‘compatibilize’ immiscible polymer pairs. In the present work, the role of interfacially located nanoparticles on the coalescence in immiscible blends is investigated systematically to clarify their role as compared to that of block copolymers. A (70/30 vol%) polydimethylsiloxane (PDMS)/polyisobutylene (PIB) blend with a droplet/matrix microstructure is chosen as a model system. Contact angle measurements and theoretical models are used to select the surface chemistry of the nanoparticles to ensure their localization at the polymer/polymer interface, which is experimentally verified by scanning microscopy under cryogenic conditions. Using a rheological method it is shown that coalescence of the dispersed phase is slowed down or even totally suppressed when nanoparticles are present at the interface. This effect becomes stronger when the particle concentration is increased or the (aggregate) size is reduced. Additionally, anisotropic nanoparticles tend to stabilize blends more efficiently than their spherical counterparts. A combination of optical microscopy and interfacial rheometry using planar interfaces has been used to demonstrate that the nanoparticles mainly affect the surface rheological properties, whereas traditional compatibilizers also strongly affect the interfacial tension. As a result, nanoparticles with a suitable surface chemistry can be used to tune the flow-induced microstructure of immiscible polymer blends by optimizing their concentration, size and shape.

Graphical abstract: Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology

Article information

Article type
Paper
Submitted
24 Dec 2009
Accepted
26 Mar 2010
First published
24 May 2010

Soft Matter, 2010,6, 3353-3362

Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology

S. Vandebril, J. Vermant and P. Moldenaers, Soft Matter, 2010, 6, 3353 DOI: 10.1039/B927299B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements