Issue 5, 2010

Intelligent nucleic acid delivery systems based on stimuli-responsive polymers

Abstract

Despite significant advances in the past two decades, gene therapy is still in the stage of clinical trials worldwide mainly due to the lack of safe and efficient delivery vehicles for therapeutic nucleic acids. Among the various attempts to develop clinically applicable gene therapy, polymer-based nucleic acid delivery systems have attracted great interest, especially for the exciting RNAi-based gene therapy. Regarding in vivo nucleic acid delivery, in particular via intravenous injection, there are many extra- and intracellular obstacles, some of which are conflicting. Virus-mimicking nucleic acid delivery systems that combine multiple and programmable functions are thought to be very promising for conquering these challenging barriers. In this review article, we highlight recent progress in stimuli-responsive polymers that have been applied in fabrication of non-viral multi-functional nucleic acid vehicles, which are categorized by the type of stimulus: reduction potential, pH, temperature, and others. In each section, intelligent pDNA delivery systems are introduced first, followed by summarizing various responsive polymer-based siRNA vehicles. Considering the great potential of RNAi-based gene therapy, we devote some space to the recent progress of multi-functional siRNA delivery systems. In addition, different requirements in designing polymer-based siRNA and pDNA carriers are also specified in this review.

Graphical abstract: Intelligent nucleic acid delivery systems based on stimuli-responsive polymers

Article information

Article type
Review Article
Submitted
27 Jul 2009
Accepted
12 Nov 2009
First published
22 Dec 2009

Soft Matter, 2010,6, 835-848

Intelligent nucleic acid delivery systems based on stimuli-responsive polymers

F. Du, Y. Wang, R. Zhang and Z. Li, Soft Matter, 2010, 6, 835 DOI: 10.1039/B915020J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements