Issue 8, 2009

Subgel transition in diluted vesicular DODAB dispersions

Abstract

We have characterized the lipid chain freezing in dilute aqueous vesicle dispersions of the cationic lipid dioctadecyldimethylammonium bromide (DODAB) using wide and small angle X-ray scattering, solid state NMR, DSC, turbidity and density measurements. The lipids freeze in two steps. Above 40 °C the chains are fluid and the lipids are in a so-called liquid-crystalline state. When cooling below 40 °C, the lipids form a gel phase where the chains stretch, the molecules are more densely packed and most molecular degrees of freedom are frozen, or at least dramatically slowed down. In the gel phase, the chain packing is still disordered, while the chain mobility is significantly reduced. From NMR data we further conclude that also the molecular rotational diffusion around the molecular long axis is quenched. Slow chain reorientation may occur, but then as individual reorientations of the separate chains. When cooling further below 36 °C, crystalline ordering of the chains is obtained, resulting in a further increased packing density. We refer to this state as the subgel phase. The transitions are reversible. However, the formation of the ordered subgel is very slow for temperatures near the melting point. In fact, the gel phase can be supercooled by almost 20 °C for considerable time. From analyzing this transition in terms of classical nucleation we obtain an estimate of the intra-bilayer interfacial tension between the gel phase and the growing subgel domains of 2 mN m−1.

Graphical abstract: Subgel transition in diluted vesicular DODAB dispersions

Article information

Article type
Paper
Submitted
28 Nov 2008
Accepted
05 Feb 2009
First published
11 Mar 2009

Soft Matter, 2009,5, 1735-1742

Subgel transition in diluted vesicular DODAB dispersions

P. Saveyn, P. Van der Meeren, M. Zackrisson, T. Narayanan and U. Olsson, Soft Matter, 2009, 5, 1735 DOI: 10.1039/B821387A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements