Issue 12, 2019

Vapor-fed electrolysis of water using earth-abundant catalysts in Nafion or in bipolar Nafion/poly(benzimidazolium) membranes

Abstract

Vapor-fed electrolysis of water has been performed using membrane-electrode assemblies (MEAs) incorporating earth-abundant catalysts and bipolar membranes (BPMs). Catalyst films containing CoP nanoparticles, carbon black, and Nafion were synthesized, characterized, and integrated into cathodes of MEAs. The CoP-containing MEAs exhibited stable (>16 h) vapor-fed electrolysis of water at room temperature at a current density of 10 mA cm−2 with 350 mV of additional overvoltage relative to MEA's formed from Pt/C cathodic electrocatalysts due to slower hydrogen-evolution reaction kinetics under vapor-fed conditions and fewer available triple-phase boundaries in the catalyst film. Additionally, catalyst films containing a [NiFe]-layered double hydroxide ([NiFe]-LDH) as well as a hydroxide ion conductor, hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI), were synthesized, characterized, and integrated into the anodes of the MEAs. The [NiFe]-LDH-containing MEAs exhibited overvoltages at 10 mA cm−2 that were similar to those of IrOx-containing MEAs for vapor-fed electrolysis of water at room temperature. A BPM was formed by pairing Nafion with HMT-PMBI, resulting in a locally alkaline environment of HMT-PMBI to stabilize the [NiFe]-LDH and a locally acidic environment to stabilize the CoP. BPM-based MEAs were stable (>16 h) for vapor-fed electrolysis of water at room temperature at a current density of 10 mA cm−2, with a change in the pH gradient of 1 unit over 16 h of electrolysis for IrOx-containing MEAs. The stability of [NiFe]-LDH-based MEAs under vapor-fed conditions was dependent on the catalyst film morphology and resulting BPM interface, with stable operation at 10 mA cm−2 achieved for 16 h. All MEAs exhibited a drift in the operating voltage over time associated with dehydration. These results demonstrate that earth-abundant catalysts and BPMs can be incorporated into stable, room-temperature, vapor-fed water-splitting cells operated at 10 mA cm−2.

Graphical abstract: Vapor-fed electrolysis of water using earth-abundant catalysts in Nafion or in bipolar Nafion/poly(benzimidazolium) membranes

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2019
Accepted
23 Oct 2019
First published
28 Oct 2019

Sustainable Energy Fuels, 2019,3, 3611-3626

Author version available

Vapor-fed electrolysis of water using earth-abundant catalysts in Nafion or in bipolar Nafion/poly(benzimidazolium) membranes

P. K. Giesbrecht, A. M. Müller, C. G. Read, S. Holdcroft, N. S. Lewis and M. S. Freund, Sustainable Energy Fuels, 2019, 3, 3611 DOI: 10.1039/C9SE00672A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements