Jump to main content
Jump to site search

Issue 5, 2021
Previous Article Next Article

Stable monovalent aluminum(i) in a reduced phosphomolybdate cluster as an active acid catalyst

Author affiliations

Abstract

Low-valent aluminum Al(I) chemistry has attracted extensive research interest due to its unique chemical and catalytic properties but is limited by its low stability. Herein, a hourglass phosphomolybdate cluster with a metal-center sandwiched by two benzene-like planar subunits and large steric-hindrance is used as a scaffold to stabilize low-valent Al(I) species. Two hybrid structures, (H3O)2(H2bpe)11[AlIII(H2O)2]3{[AlI(P4MoV6O31H6)2]3·7H2O (abbr. Al6{P4Mo6}6) and (H3O)3(H2bpe)3[AlI(P4MoV6O31H7)2]·3.5H2O (abbr. Al{P4Mo6}2) (bpe = trans-1,2-di-(4-pyridyl)-ethylene) were successfully synthesized with Al(I)-sandwiched polyoxoanionic clusters as the first inorganic-ferrocene analogues of a monovalent group 13 element with dual Lewis and Brønsted acid sites. As dual-acid catalysts, these hourglass structures efficiently catalyze a solvent-free four-component domino reaction to synthesize 1,5-benzodiazepines. This work provides a new strategy to stabilize low-valent Al(I) species using a polyoxometalate scaffold.

Graphical abstract: Stable monovalent aluminum(i) in a reduced phosphomolybdate cluster as an active acid catalyst

Back to tab navigation

Supplementary files

Article information


Submitted
24 Sep 2020
Accepted
06 Dec 2020
First published
08 Dec 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2021,12, 1886-1890
Article type
Edge Article

Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst

Y. Zhang, L. Zhou, Y. Ma, K. Dastafkan, C. Zhao, L. Wang and Z. Han, Chem. Sci., 2021, 12, 1886
DOI: 10.1039/D0SC05277A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements