Issue 28, 2020

Helix-constructed polar rare-earth iodate fluoride as a laser nonlinear optical multifunctional material

Abstract

The first trivalent rare-earth iodate fluoride nonlinear optical (NLO) crystal, Y(IO3)2F (YIF), was successfully designed and synthesized, featuring polarization-favorable helical chains constructed from trans-YO6F2 polyhedra and IO3 groups. It exhibited a suitable balance of a wide transparency range of 0.26–10.0 μm, high laser damage threshold (LDT) of 39.6 × AgGaS2, and moderate second harmonic generation (SHG) effect of 2 × KDP. A series of doped RE:YIF (RE = Pr, Nd, Dy, Ho, Er, Tm, and Yb) crystals were easily synthesized benefiting from the spring-shaped helix structure, which possess wide absorption and emission peaks as well as long lifetime, especially in the visible and near-infrared regions. Particularly, the remarkable fluorescence properties of Nd and Yb doped YIF crystals are comparable to and even better than those of traditional self-frequency doubling (SFD) crystals such as YAB, YCOB, and GdCOB. Thus, these RE-doped YIF crystals are promising laser SFD crystals. This work also indicated that constructing helical chains should be an effective strategy for the design of inorganic polar materials.

Graphical abstract: Helix-constructed polar rare-earth iodate fluoride as a laser nonlinear optical multifunctional material

Supplementary files

Article information

Article type
Edge Article
Submitted
15 May 2020
Accepted
21 Jun 2020
First published
23 Jun 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 7396-7400

Helix-constructed polar rare-earth iodate fluoride as a laser nonlinear optical multifunctional material

G. Peng, Y. Yang, T. Yan, D. Zhao, B. Li, G. Zhang, Z. Lin and N. Ye, Chem. Sci., 2020, 11, 7396 DOI: 10.1039/D0SC02789H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements