Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 9, 2020
Previous Article Next Article

Molecularly engineered hole-transport material for low-cost perovskite solar cells

Author affiliations

Abstract

Triphenylamine-N-phenyl-4-(phenyldiazenyl)aniline (TPA-AZO) is synthesized via a facile CuI-catalyzed reaction and used as a hole transport material (HTM) in perovskite solar cells (PSCs), as an alternative to the expensive spiro-type molecular materials, including commercial 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD). Experimental and computational investigations reveal that the highest occupied molecular orbital (HOMO) level of TPA-AZO is deeper than that of spiro-OMeTAD, and optimally matches with the conduction band of the perovskite light absorber. The use of TPA-AZO as a HTM results in PSC prototypes with a power conversion efficiency (PCE) approaching that of the spiro-OMeTAD-based reference device (17.86% vs. 19.07%). Moreover, the use of inexpensive starting reagents for the synthesis of TPA-AZO makes the latter a new affordable HTM for PSCs. In particular, the cost of 1 g of TPA-AZO ($22.76) is significantly lower compared to that of spiro-OMeTAD ($170–475). Overall, TPA-AZO-based HTMs are promising candidates for the implementation of viable PSCs in large-scale production.

Graphical abstract: Molecularly engineered hole-transport material for low-cost perovskite solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
09 Nov 2019
Accepted
12 Jan 2020
First published
13 Jan 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 2429-2439
Article type
Edge Article

Molecularly engineered hole-transport material for low-cost perovskite solar cells

B. Pashaei, S. Bellani, H. Shahroosvand and F. Bonaccorso, Chem. Sci., 2020, 11, 2429
DOI: 10.1039/C9SC05694G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements