Issue 35, 2019

A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation

Abstract

Photothermal therapy in the second near-infrared window (NIR-II, 1000–1700 nm) exhibits a significant advantage over the first near-infrared window (NIR-I, 650–950 nm) in terms of both maximum permissible exposure (MPE) and penetration depth. However, the thus far reported NIR-II photothermal agents (PTAs) have been focused just on inorganic semiconducting and organic polymeric semiconducting nanoparticles. Herein a novel cruciform phthalocyanine pentad was designed, synthesized, and characterized for the first time. The water-soluble nanoparticles (Zn4–H2Pc/DP NPs) assembled from this single molecular material with the help of DSPE–PEG2000–OCH3 exhibit characteristic absorption in the NIR-II region at 1064 nm with a large extinction coefficient of 52 L g−1 cm−1, high photothermal conversion efficiency of 58.3%, and intense photoacoustic signal. Moreover, both in vitro and in vivo studies reveal the good biocompatibility and notable tumor ablation ability of Zn4–H2Pc/DP NPs under 1064 nm laser irradiation. Theoretical density functional theory calculations interpret the two-dimensional compressional wave energy-dissipation pathway over the broad saddle curved framework of the cruciform conjugated phthalocyanine pentad, rationalizing the efficient photothermal properties of corresponding Zn4–H2Pc/DP NPs in the NIR-II window.

Graphical abstract: A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation

Supplementary files

Article information

Article type
Edge Article
Submitted
02 Jun 2019
Accepted
16 Jul 2019
First published
18 Jul 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 8246-8252

A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation

H. Pan, S. Li, J. Kan, L. Gong, C. Lin, W. Liu, D. Qi, K. Wang, X. Yan and J. Jiang, Chem. Sci., 2019, 10, 8246 DOI: 10.1039/C9SC02674F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements