Jump to main content
Jump to site search

Issue 35, 2019
Previous Article Next Article

Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and ab initio calculations

Author affiliations

Abstract

Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes. We find that the Q-band of Bchl a is comprised of two independent bands, that are assigned following the Gouterman model to Qx and Qy states with orthogonal transition dipole moments. However, we measure the angle to be ∼75°, a finding that is confirmed by ab initio calculations. The internal conversion rate constant from Qx to Qy is found to be 11 ps−1. Unlike Bchl a, the Q-band of Chl a contains three distinct peaks with different polarizations. Ab initio calculations trace these features back to a spectral overlap between two electronic transitions and their vibrational replicas. The smaller energy gap and the mixing of vibronic states result in faster internal conversion rate constants of 38–50 ps−1. We analyze the spectra of penta-coordinated Bchl a and Chl a to highlight the interplay between low-lying vibronic states and their relationship to photoinduced relaxation. Our findings shed new light on the photoexcited dynamics in photosynthetic systems where these chromophores are primary pigments.

Graphical abstract: Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and ab initio calculations

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 May 2019, accepted on 02 Jul 2019 and first published on 03 Jul 2019


Article type: Edge Article
DOI: 10.1039/C9SC02329A
Chem. Sci., 2019,10, 8143-8153
  • Open access: Creative Commons BY license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and ab initio calculations

    Y. Song, A. Schubert, E. Maret, R. K. Burdick, B. D. Dunietz, E. Geva and J. P. Ogilvie, Chem. Sci., 2019, 10, 8143
    DOI: 10.1039/C9SC02329A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements