Issue 7, 2016

Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation

Abstract

Unprecedented molecular recognition ability governed by a simple bimetallic surface is reported. A series of Rh-based ordered alloys supported on silica gel (RhxMy/SiO2, where M is Bi, Fe, Ga, Ge, In, Ni, Pb, Sb, Sn, or Zn) were tested in the hydrogenation of nitrostyrene to form aminostyrene. RhIn/SiO2 showed remarkably high catalytic activity and good selectivity under 1 atm H2 at room temperature. Moreover, various other nitroarenes containing carbonyl, cyano, or halo moieties were selectively hydrogenated into the corresponding amino derivatives using RhIn/SiO2. Kinetic study and density functional theory (DFT) calculations revealed that the high selectivity originates from RhIn/SiO2 adsorbing nitro groups much more favorably than vinyl groups. In addition, the DFT calculations indicated that the RhIn ordered alloy presents concave Rh rows and convex In rows on its surface, which are able to capture the nitro group with end-on geometry while effectively minimizing vinyl-π adsorption. Thus, the specific and highly ordered surface structure of RhIn enables the chemoselective molecular recognition of nitro groups over vinyl groups through geometric and chemical effects.

Graphical abstract: Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation

Supplementary files

Article information

Article type
Edge Article
Submitted
22 Feb 2016
Accepted
28 Mar 2016
First published
29 Mar 2016
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2016,7, 4476-4484

Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation

S. Furukawa, K. Takahashi and T. Komatsu, Chem. Sci., 2016, 7, 4476 DOI: 10.1039/C6SC00817H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements