Jump to main content
Jump to site search

Issue 4, 2014
Previous Article Next Article

Computational prediction and experimental confirmation of B-site doping in YBa2Fe3O8

Author affiliations

Abstract

In this work we use calculations to obtain reaction enthalpies for the formation of YBa2Fe3−xMxO8 (where M = Co, Ni and Mn and x = 1, 2 and 3) from binary oxides and oxygen gas using Density Functional Theory (DFT). Based upon these calculations we are able to make predictions on favourable levels of doping and B-site ordering for YBa2Fe3−xMxO8, followed by experimental investigation in the same study. The composition where we predict doping to be favourable was experimentally investigated and a triple perovskite is found to be the major phase, confirming the prediction. Optimisation of the synthesis produced a phase-pure triple perovskite, Y1.175Ba1.825Fe2MnOδ, formed in a narrow compositional window. The crystal structure of this phase was analysed using Powder X-ray Diffraction (PXRD), iodometric titrations, Mössbauer spectroscopy and Neutron Powder Diffraction (NPD). This is the first reported example of ordered or disordered Fe and Mn coexistence in this structure type. We compare the observed structure against the initial DFT predictions and find them to be in good agreement and conclude that the computational methods presented within this work can be used as a predictive guide to the synthesis of oxide materials.

Graphical abstract: Computational prediction and experimental confirmation of B-site doping in YBa2Fe3O8

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Sep 2013, accepted on 24 Dec 2013 and first published on 03 Jan 2014


Article type: Edge Article
DOI: 10.1039/C3SC52734D
Author version
available:
Download author version (PDF)
Chem. Sci., 2014,5, 1493-1505
  • Open access: Creative Commons BY license
  •   Request permissions

    Computational prediction and experimental confirmation of B-site doping in YBa2Fe3O8

    C. Collins, M. S. Dyer, A. Demont, P. A. Chater, M. F. Thomas, G. R. Darling, J. B. Claridge and M. J. Rosseinsky, Chem. Sci., 2014, 5, 1493
    DOI: 10.1039/C3SC52734D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements