Jump to main content
Jump to site search

Issue 2, 2014
Previous Article Next Article

Towards a comprehensive understanding of platinum dissolution in acidic media

Author affiliations

Abstract

Platinum is one of the most important electrode materials for continuous electrochemical energy conversion due to its high activity and stability. The resistance of this scarce material towards dissolution is however limited under the harsh operational conditions that can occur in fuel cells or other energy conversion devices. In order to improve the understanding of dissolution of platinum, we therefore investigate this issue with an electrochemical flow cell system connected to an inductively coupled plasma mass spectrometer (ICP-MS) capable of online quantification of even small traces of dissolved elements in solution. The electrochemical data combined with the downstream analytics are used to evaluate the influence of various operational parameters on the dissolution processes in acidic electrolytes at room temperature. Platinum dissolution is a transient process, occurring during both positive- and negative-going sweeps over potentials of ca. 1.1 VRHE and depending strongly on the structure and chemistry of the formed oxide. The amount of anodically dissolved platinum is thereby strongly related to the number of low-coordinated surface sites, whereas cathodic dissolution depends on the amount of oxide formed and the timescale. Thus, a tentative mechanism for Pt dissolution is suggested based on a place exchange of oxygen atoms from surface to sub-surface positions.

Graphical abstract: Towards a comprehensive understanding of platinum dissolution in acidic media

Back to tab navigation

Publication details

The article was received on 27 Aug 2013, accepted on 16 Oct 2013 and first published on 18 Oct 2013


Article type: Edge Article
DOI: 10.1039/C3SC52411F
Chem. Sci., 2014,5, 631-638
  • Open access: Creative Commons BY license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Towards a comprehensive understanding of platinum dissolution in acidic media

    A. A. Topalov, S. Cherevko, A. R. Zeradjanin, J. C. Meier, I. Katsounaros and K. J. J. Mayrhofer, Chem. Sci., 2014, 5, 631
    DOI: 10.1039/C3SC52411F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements