Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 11, 2013

Formation of sub-valent carbenoid ligands by metal-mediated dehydrogenation chemistry: coordination and activation of H2Ga{(NDippCMe)2CH}

Author affiliations

Abstract

Reactions of the β-diketiminato (‘Nacnac’) stabilized gallium dihydride H2Ga{(NDippCMe)2CH} with a range of mono- and dinuclear metal carbonyl reagents are characterized by loss of dihydrogen and formation of donor/acceptor complexes featuring the Ga(I) carbenoid ligand : Ga{(NDippCMe)2CH}. Thus, far from simply mimicking the chemistry of the corresponding alane H2Al{(NDippCMe)2CH}, which yields κ1 and κ2 Al–H σ-complexes with similar reagents, the weaker nature of Ga–H bonds leads to extensive bond activation chemistry and enables an unprecedented dehydrogenative route to Ga(I) ligand systems. By consideration of the chemistry of dinuclear systems, two alternative pathways are revealed for this chemistry, with either H2 or M–H bonds acting as the ultimate hydrogen sink.

Graphical abstract: Formation of sub-valent carbenoid ligands by metal-mediated dehydrogenation chemistry: coordination and activation of H2Ga{(NDippCMe)2CH}

Supplementary files

Article information


Submitted
31 Jul 2013
Accepted
20 Aug 2013
First published
20 Aug 2013

Chem. Sci., 2013,4, 4245-4250
Article type
Edge Article

Formation of sub-valent carbenoid ligands by metal-mediated dehydrogenation chemistry: coordination and activation of H2Ga{(NDippCMe)2CH}

J. Turner, J. A. B. Abdalla, J. I. Bates, R. Tirfoin, M. J. Kelly, N. Phillips and S. Aldridge, Chem. Sci., 2013, 4, 4245 DOI: 10.1039/C3SC52133H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements