Issue 3, 2010

Direct observation of CuI/CuIIIredox steps relevant to Ullmann-type coupling reactions

Abstract

A series of aryl–copper(III)-halide complexes have been synthesized and characterized by NMR and UV-visible spectroscopy, cyclic voltammetry and X-ray crystallography. These complexes closely resemble elusive intermediates often invoked in catalytic reactions, such as Ullmann–Goldberg cross-coupling reactions, and their preparation has enabled direct observation and preliminary characterization of aryl halide reductive elimination from CuIII and oxidative addition to CuI centers. In situ spectroscopic studies (1H NMR, UV-visible) of a Cu-catalyzed C–N coupling reaction provides definitive evidence for the involvement of an aryl-copper(III)-halide intermediate in the catalytic mechanism. These results provide the first direct observation of the CuI/CuIII redox steps relevant to Ullmann-type coupling reactions.

Graphical abstract: Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions

Supplementary files

Article information

Article type
Edge Article
Submitted
31 Mar 2010
Accepted
15 Apr 2010
First published
15 Jun 2010

Chem. Sci., 2010,1, 326-330

Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions

A. Casitas, A. E. King, T. Parella, M. Costas, S. S. Stahl and X. Ribas, Chem. Sci., 2010, 1, 326 DOI: 10.1039/C0SC00245C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements