Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2018
Previous Article Next Article

The challenges of learning and teaching chemical bonding at different school levels using electrostatic interactions instead of the octet rule as a teaching model

Author affiliations

Abstract

Teaching chemical bonding using the octet rule as an explanatory principle is problematic in many ways. The aim of this case study is to understand the learning and teaching of chemical bonding using a research-informed teaching model in which chemical bonding is introduced as an electrostatic phenomenon. The study posed two main questions: (i) how does a student's understanding of chemical bonding evolve from lower- to upper-secondary school when an electrostatic model of chemical bonding was used at the lower-secondary level? (ii) How does the teaching of octets/full shells at the upper-secondary level affect students’ understanding? The same students were interviewed after lower-secondary school and again during their first year at upper-secondary school. Their upper-level chemistry teachers were also interviewed. The interview data were analysed using the grounded theory method. The findings showed that the students’ earlier proper understanding of the electrostatic-interactions model at the lower-secondary level did not prevent the later development of less-canonical thinking. Teachers’ pedagogical content knowledge (PCK) of the explanatory principles of chemical bonding and how to use explanations in science education needs to be promoted in both pre-service teacher education and during in-service training.

Back to tab navigation

Article information


Submitted
22 Apr 2018
Accepted
12 Jun 2018
First published
21 Jun 2018

This article is Open Access

Chem. Educ. Res. Pract., 2018,19, 932-953
Article type
Paper

The challenges of learning and teaching chemical bonding at different school levels using electrostatic interactions instead of the octet rule as a teaching model

J. Joki and M. Aksela, Chem. Educ. Res. Pract., 2018, 19, 932
DOI: 10.1039/C8RP00110C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements