Jump to main content
Jump to site search

Issue 11, 2020
Previous Article Next Article

Characterization of reaction enthalpy and kinetics in a microscale flow platform

Author affiliations

Abstract

We report an isothermal flow calorimeter for characterization of reaction enthalpy and kinetics. The platform consists of a thermoelectric element and a glass–silicon microreactor to measure heat flux and an inline IR spectrometer to monitor reaction conversion. The thermally insulated assembly is calibrated with a thin film heater placed between the microreactor and the thermoelectric element. Without any reconfiguration of hardware, the setup can also be used to efficiently characterize reaction kinetics in transient flow experiments. We tested the calorimeter with hydrolysis of acetic anhydride as a model reaction. We determined the exothermic reaction enthalpy and the endothermic heat of mixing of the reagent to be −63 ± 3.0 kJ mol−1 and +8.8 ± 2.1 kJ mol−1 respectively, in good agreement with literature values and theoretical predictions. Following calorimetry studies, we investigated reaction kinetics by applying carefully controlled residence time ramps at four different temperatures, and we obtained kinetic rate constants of 0.129 min−1 up to 0.522 min−1 for temperatures between 20 °C and 56.3 °C, also fitting well with data reported in the literature.

Graphical abstract: Characterization of reaction enthalpy and kinetics in a microscale flow platform

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jul 2020
Accepted
30 Sep 2020
First published
30 Sep 2020

This article is Open Access

React. Chem. Eng., 2020,5, 2115-2122
Article type
Paper

Characterization of reaction enthalpy and kinetics in a microscale flow platform

A. Ładosz, C. Kuhnle and K. F. Jensen, React. Chem. Eng., 2020, 5, 2115
DOI: 10.1039/D0RE00304B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements