Issue 7, 2020

Studying key processes related to CO2 underground storage at the pore scale using high pressure micromodels

Abstract

In this review, we present a general overview of the current progress in pore scale experimentations related to CO2 geological storage. In such processes occurring in porous media, most of the phenomena start from (bio)geochemical reactions and transport mechanisms at the pore scale. Therefore, in order to predict the overall consequences of CO2 injection inside a deep reservoir and to ensure a safe installation, it is essential to access pore-scale information for geochemical numerical methods and to improve the understanding of the critical operating parameters. In this view, high pressure micromodels that mimic geological media (Geological Labs on Chip) have recently attracted interest to study multiphase flows and chemical reactivity in porous media. Emphasis is placed on experiments that can be performed in realistic pressure conditions representative of deep geological formations, for accessing information on reactive flows in porous media, mineralization/dissolution, but also (bio)chemical processes. The use of such micromodels continues to broaden the investigation space thanks to the design of in situ characterization techniques. Together high-fidelity data not easily accessed in conventional batch or core-scale procedures is made readily available.

Graphical abstract: Studying key processes related to CO2 underground storage at the pore scale using high pressure micromodels

Article information

Article type
Review Article
Submitted
14 Jan 2020
Accepted
11 May 2020
First published
11 May 2020

React. Chem. Eng., 2020,5, 1156-1185

Studying key processes related to CO2 underground storage at the pore scale using high pressure micromodels

S. Morais, A. Cario, N. Liu, D. Bernard, C. Lecoutre, Y. Garrabos, A. Ranchou-Peyruse, S. Dupraz, M. Azaroual, R. L. Hartman and S. Marre, React. Chem. Eng., 2020, 5, 1156 DOI: 10.1039/D0RE00023J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements