Jump to main content
Jump to site search

Issue 7, 2021, Issue in Progress
Previous Article Next Article

Pickering-emulsion-templated synthesis of 3D hollow graphene as an efficient oil absorbent

Author affiliations

Abstract

The preparation of graphene in three-dimensional mode represents an alternative method to maintain its characteristically large surface area, which, under normal circumstances, is diminished by the restacking of the individual sheets. Sufficiently stable 3D graphene enables the high surface area characteristic of monoatomic graphene layers to be obtained. Based on the coupling of the high surface area and the void spaces that are thus created, which act as pores, 3D graphene is anticipated to have potential as a sorbent material. In this study, lightweight 3D hollow graphene featuring a unique thin skeletal framework was developed using the Pickering emulsion route for oil absorbent applications. In this technique, toluene droplets stabilized by graphene oxide layers in a water system were used as the template, and upon the removal of the solvent by freeze-drying and microwave-assisted reduction, 3D hollow graphene was obtained. The produced 3D graphene demonstrates excellent sorption efficiencies of 84 to 145 g g−1 for different types of oil and organic solvents in the first absorption. This excellence can be attributed to its multi-level porosity as elucidated by mercury intrusion porosimetry (MIP) and Brunauer–Emmett–Teller (BET) surface area analysis, which indicated a bimodal pore size distribution with macroporosity and mesoporosity and a surface area of 127 m2 g−1. The 3D hollow graphene prepared using the Pickering emulsion template technique incorporating microwave treatment can be readily recycled using a solvent extraction process for a total of ten sorption–desorption cycles without significant losses in its efficiency, making it promising for further consideration as an appropriate material for oil spill incidents.

Graphical abstract: Pickering-emulsion-templated synthesis of 3D hollow graphene as an efficient oil absorbent

Back to tab navigation

Supplementary files

Article information


Submitted
30 Oct 2020
Accepted
16 Dec 2020
First published
21 Jan 2021

This article is Open Access

RSC Adv., 2021,11, 3963-3971
Article type
Paper

Pickering-emulsion-templated synthesis of 3D hollow graphene as an efficient oil absorbent

N. A. Pohan, M. H. Wahid, Z. Zainal and N. A. Ibrahim, RSC Adv., 2021, 11, 3963
DOI: 10.1039/D0RA09265G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements