Jump to main content
Jump to site search

Issue 47, 2020, Issue in Progress
Previous Article Next Article

Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30 ferroelectric ceramic

Author affiliations

Abstract

In this work, Zn co-doped tungsten bronze having nominal formula Ba5CaTi1.94Zn0.06Nb8O30 has been synthesized and systematically studied for structure, dielectric and electrical properties. The formation of the phase of tetragonal tungsten bronze with space group P4bm and the occurrence of oxygen vacancies were verified by the Rietveld refinement using X-ray diffraction data. Scanning electron microscopy (SEM) of Ba5CaTi1.94Zn0.06Nb8O30 ceramic shows high densification, low porosity, and homogeneous distribution of grains of different sizes over the total surface. The sample shows a dielectric anomaly of ferroelectric paraelectric type at 262 °C, and has non-relaxor type of diffuse phase transition. The electrical property (complex impedance Z*, complex permittivity ε*, complex modulus M*) of Ba5CaTi1.94Zn0.06Nb8O30 ceramic has been investigated by non-destructive complex impedance spectroscopy (CIS) as a function of frequency at different temperatures. Grains and grain boundaries conduction is detected from a complex impedance spectrum by fitting the Nyquist plot with an appropriate electrical circuit. The Nyquist plot indicates the negative temperature coefficient of resistance (NTCR) character of Ba5CaTi1.94Zn0.06Nb8O30 ceramic. The variation of AC conductivity as a function of frequency reveals that the compound has an Arrhenius-type behavior of electrical conductivity. The DC electrical conductivities of grains and grain boundaries have been studied. The presence of non-Debye relaxations was verified by a complex modulus analysis.

Graphical abstract: Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30 ferroelectric ceramic

Back to tab navigation

Article information


Submitted
12 Jun 2020
Accepted
17 Jul 2020
First published
28 Jul 2020

This article is Open Access

RSC Adv., 2020,10, 28007-28018
Article type
Paper

Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30 ferroelectric ceramic

A. Bendahhou, K. Chourti, R. El Bouayadi, S. El Barkany and M. Abou-Salama, RSC Adv., 2020, 10, 28007
DOI: 10.1039/D0RA05163B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements