Issue 41, 2020

Facile synthesis of TiO2/Ag3PO4 composites with co-exposed high-energy facets for efficient photodegradation of rhodamine B solution under visible light irradiation

Abstract

In this study, TiO2/Ag3PO4 composites based on anatase TiO2 nanocrystals with co-exposed {101}, {010}/{100}, {001} and [111]-facets and Ag3PO4 microcrystals with irregular and cubic-like polyhedron morphologies were successfully synthesized by combining hydrothermal and ion-exchange methods. The anatase TiO2 nanocrystals with different high-energy facets were controllably prepared via hydrothermal treatment of the exfoliated [Ti4O9]2−/[Ti2O5]2− nanosheet solutions at desired pH values. The Ag3PO4 microcrystal with different morphologies was prepared via the ion-exchange method in the presence of AgNO3 and NH4H2PO4 at room temperature, which was used as a substrate to load the as-prepared anatase TiO2 nanocrystals on its surface and to form TiO2/Ag3PO4 heterostructures. The apparent rate constant of the pH 3.5-TiO2/Ag3PO4 composite was the highest at 12.0 × 10−3 min−1, which was approximately 1.1, 1.2, 1.4, 1.6, 13.3, and 24.0 fold higher than that of pH 0.5-TiO2/Ag3PO4 (10.5 × 10−3 min−1), pH 7.5-TiO2/Ag3PO4 (10.2 × 10−3 min−1), pH 11.5-TiO2 (8.8 × 10−3 min−1), Ag3PO4 (7.7 × 10−3 min−1), blank sample (0.9 × 10−3 min−1), and the commercial TiO2 (0.5 × 10−3 min−1), respectively. The pH 3.5-TiO2/Ag3PO4 composite exhibited the highest visible-light photocatalytic activity which can be attributed to the synergistic effects of its heterostructure, relatively small crystal size, large specific surface area, good crystallinity, and co-exposed high-energy {001} and [111]-facets. The as-prepared TiO2/Ag3PO4 composites still exhibited good photocatalytic activity after three successive experimental runs, indicating that they had remarkable stability. This study provides a new way for the preparation of TiO2/Ag3PO4 composite semiconductor photocatalysts with high energy crystal surfaces and high photocatalytic activity.

Graphical abstract: Facile synthesis of TiO2/Ag3PO4 composites with co-exposed high-energy facets for efficient photodegradation of rhodamine B solution under visible light irradiation

Article information

Article type
Paper
Submitted
10 May 2020
Accepted
19 Jun 2020
First published
26 Jun 2020
This article is Open Access
Creative Commons BY license

RSC Adv., 2020,10, 24555-24569

Facile synthesis of TiO2/Ag3PO4 composites with co-exposed high-energy facets for efficient photodegradation of rhodamine B solution under visible light irradiation

Y. Du, W. Li, Y. Bai, Z. Huangfu, W. Wang, R. Chai, C. Chen, X. Yang and Q. Feng, RSC Adv., 2020, 10, 24555 DOI: 10.1039/D0RA04183A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements