Jump to main content
Jump to site search

Issue 26, 2020, Issue in Progress
Previous Article Next Article

Ultrafast broadband nonlinear optical properties and excited-state dynamics of two bis-chalcone derivatives

Author affiliations

Abstract

The development of organic nonlinear optical (NLO) chromophores is vital for various fields such as two-photon biomedical imaging, optical limiting, etc. In this work, two bis-chalcone molecules 1,4-bis[3-(2,4-dimethoxyphenyl)-2-acryloyl]benzene (C1) and 4,4′-bis[3-(2,4-bimethoxy phenyl)-2-acryloyl]biphenyl (C2) were synthesized and characterized. The excited-state dynamics of these two chromophores were studied using femtosecond transient absorption (TA) measurements. And their broadband nonlinear absorption properties and optical limiting (OL) response were investigated by femtosecond open-aperture Z-scan and intensity-dependent transmittance measurements in the wavelength range from 515 nm to 800 nm, respectively. The TA results demonstrate that C2 has strong excited-state absorption behavior and longer lifetime. In addition, the nonlinear absorption response of C2 was found to be superior to that of C1 in the visible range after 500 nm, which is attributed to a two-photon-absorption induced excited-state absorption mechanism. These results indicate that the nonlinear optical response and excited-state dynamics in bis-chalcone compounds could be enhanced via intramolecular charge-transfer.

Graphical abstract: Ultrafast broadband nonlinear optical properties and excited-state dynamics of two bis-chalcone derivatives

Back to tab navigation

Article information


Submitted
19 Feb 2020
Accepted
31 Mar 2020
First published
17 Apr 2020

This article is Open Access

RSC Adv., 2020,10, 15199-15205
Article type
Paper

Ultrafast broadband nonlinear optical properties and excited-state dynamics of two bis-chalcone derivatives

L. Shen, Z. Li, X. Wu, W. Zhou, J. Yang and Y. Song, RSC Adv., 2020, 10, 15199
DOI: 10.1039/D0RA01592J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements