Issue 19, 2020

Development of a novel cellulose solvent based on pyrrolidinium hydroxide and reliable solubility analysis

Abstract

Cellulose processing remains a challenge as it is insoluble in water and common organic solvents. Ionic liquids (ILs) are organic salts with a melting point below 100 °C and are known for their excellent solvent properties. Unlike common organic solvents, which can form toxic or flammable vapours due to their high volatility, ILs can be considered as more environmentally friendly due to their negligible vapour pressure and flame retardant properties. We found that N-butyl-N-methylpyrrolidinium hydroxide enables rapid dissolution of up to 20 wt% Avicel® cellulose at 25 °C in aqueous solution (50 wt% water), making it the first pyrrolidinium-based salt capable of dissolving cellulose. Furthermore, solubility studies are currently carried out mainly with the naked eye, microscopy or spectroscopy. The former is a subjective method because it depends on the observer, and particles at the micro-level cannot be seen with the human eye. Microscopic and spectroscopic analyses are suitable for the verification of solubility; however, the acquisition costs of the instruments are high, and sample preparation is time-consuming. We propose that turbidity is a suitable measure for solubility, and investigated a simple and fast method to evaluate cellulose solubility in aqueous N-butyl-N-methylpyrrolidinium hydroxide by employing a turbidimeter which was compared with microscopy and ocular (eye) observation. In this study, we have not only found a promising new solvent for cellulose processing, but also offer a reliable solubility analysis.

Graphical abstract: Development of a novel cellulose solvent based on pyrrolidinium hydroxide and reliable solubility analysis

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2020
Accepted
12 Mar 2020
First published
20 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 11475-11480

Development of a novel cellulose solvent based on pyrrolidinium hydroxide and reliable solubility analysis

E. R. D. Seiler, Y. Takeoka, M. Rikukawa and M. Yoshizawa-Fujita, RSC Adv., 2020, 10, 11475 DOI: 10.1039/D0RA01486A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements