Jump to main content
Jump to site search

Issue 6, 2020, Issue in Progress
Previous Article Next Article

The C–H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature

Author affiliations

Abstract

In this study, controlled mono and di-olefination of arenes was first realized at room temperature via the C–H bond activation in ionic liquids, probably due to the positive effects of ionic liquids. It is an energy-saving routes in industrial production without the need for heating equipment. Different catalysts were screened, and it was found that [Ru(p-cymene)Cl2]2 generated mono-olefinated products predominantly while [Cp*RhCl2]2 selectively gave di-olefinated products. These catalysts ([BMIM]NTf2 and [BMIM]PF6) as green and recyclable reaction media are highly efficient under mild conditions. This reaction process can avoid any volatile and environmentally toxic organic solvents, and is much safer without the need for pressure-tight equipment. A wide substrate scope with good yields and satisfactory selectivity was achieved. The reactions can be scaled up to gram-scale. Furthermore, an expensive rhodium/ruthenium catalytic system was recycled for at least 6 times with consistently high catalytic activity, which was economical and environmental friendly from an industrial point of view. According to the mechanistic study, the C–H bond cleavage was probably achieved via the concerted metalation–deprotonation. This technique can be applied in the synthesis of various valuable unsaturated aromatic compounds and shows a great potential for industrial production.

Graphical abstract: The C–H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature

Back to tab navigation

Supplementary files

Article information


Submitted
21 Nov 2019
Accepted
29 Dec 2019
First published
20 Jan 2020

This article is Open Access

RSC Adv., 2020,10, 3203-3211
Article type
Paper

The C–H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature

K. Du and T. Yao, RSC Adv., 2020, 10, 3203
DOI: 10.1039/C9RA09736H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements