Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 4, 2020, Issue in Progress
Previous Article Next Article

Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors

Author affiliations

Abstract

Chemiresistive gas sensors, which exploit their electrical resistance in response to changes in nearby gas environments, usually achieve selective gas detection using multi-element sensor arrays. As large numbers of sensors are required, they often suffer from complex and high-cost fabrication. Here, we demonstrate an ambipolar organic thin-film transistor as a potential multi-gas sensing device utilizing gate-tunable gas sensing behaviors. Combining behaviors of both electron and hole carriers in a single device, the proposed device showed dynamic changes depending on gate biases and properties of target gases. As a result, the gas response as a function of gate biases exhibits a unique pattern towards a specific gas as well as its concentrations, which is very different from conventional unipolar organic thin-film transistors. In addition, our device showed an excellent air-stable characteristic compared to typical ambipolar transistors, providing great potential for practical use in the future.

Graphical abstract: Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors

Back to tab navigation

Supplementary files

Article information


Submitted
06 Nov 2019
Accepted
25 Dec 2019
First published
09 Jan 2020

This article is Open Access

RSC Adv., 2020,10, 1910-1916
Article type
Paper

Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors

H. Kwon, H. Yoo, M. Nakano, K. Takimiya, J. Kim and J. K. Kim, RSC Adv., 2020, 10, 1910
DOI: 10.1039/C9RA09195E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements