Jump to main content
Jump to site search

Issue 23, 2020
Previous Article Next Article

Renal-clearable hyaluronic acid functionalized NaGdF4 nanodots with enhanced tumor accumulation

Author affiliations

Abstract

Integration of high tumor-targeting capacity, controlling in vivo transport and low normal tissue retention into one engineered nanoparticle is a critical issue for future clinically translatable anti-cancer nanomedicines. Herein, hyaluronic acid functionalized 3.8 nm NaGdF4 nanodots (named NaGdF4 ND@HAs) have been prepared through conjugation of tryptone capped NaGdF4 nanodots (NaGdF4 ND@tryptone) with hyaluronic acid (HA, a naturally occurring glycosaminoglycan), which can recognize the overexpressed CD44 on cancer cell membranes. The as-prepared NaGdF4 ND@HAs have good paramagnetic properties (longitudinal relaxivity (r1) = 7.57 × 10−3 M S−1) and low cytotoxicity. The in vivo experimental results demonstrate that the NaGdF4 ND@HAs can not only efficiently accumulate in mouse-bearing MDA-MB-231 tumors (ca. 5.3% injection dosage (ID) g−1 at 2 h post-injection), but also have an excellent renal clearance efficiency (ca. 75% injection dosage (ID) at 24 h post-injection). The as-prepared NaGdF4 ND@HAs have good paramagnetic properties with enhanced tumor-targeting capacity, which provides a useful strategy for the preparation of renal clearable magnetic resonance imaging (MRI) contrast agents for tumors.

Graphical abstract: Renal-clearable hyaluronic acid functionalized NaGdF4 nanodots with enhanced tumor accumulation

Back to tab navigation

Supplementary files

Article information


Submitted
31 Oct 2019
Accepted
30 Mar 2020
First published
06 Apr 2020

This article is Open Access

RSC Adv., 2020,10, 13872-13878
Article type
Paper

Renal-clearable hyaluronic acid functionalized NaGdF4 nanodots with enhanced tumor accumulation

Y. Yan, L. Ding, L. Liu, M. M. A. Abualrejal, H. Chen and Z. Wang, RSC Adv., 2020, 10, 13872
DOI: 10.1039/C9RA08974H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements