Jump to main content
Jump to site search

Issue 63, 2019, Issue in Progress
Previous Article Next Article

Modified melamine-formaldehyde resins improve tensile strength along with antifouling and flame retardancy in impregnation of cellulose paper

Author affiliations

Abstract

In this study, polyvinyl alcohol (PVA) and benzoguanamine (BG) modified melamine-formaldehyde (MF) resins were used to prepare two high-pressure laminates (HPLs) as well as a pure cellulose paper laminate and core sandwich laminates with the core material of aramid paper (AP) or polypropylene non-woven fabric (PPNF). The tensile strength, flame retardancy and antifouling properties of the modified MF resin laminates were studied and compared with the MF resin laminate. The tensile test results showed that the MF resins modified with BG and PVA improved the tensile strength of the impregnated paper. In comparison with pure kraft cellulose paper laminates, the aramid paper core laminates displayed comparatively higher tensile strength. Antifouling test results indicated that modified MF resin laminates had no obvious change while the MF resin laminate was stained. Thermal stability of the modified resins was investigated by thermogravimetric (TG) analysis and the results showed that the char yield of modified MF resin was higher than that of the unmodified MF resin due to the addition of BG. The modified MF resin laminates exhibited better flame retardancy properties through the analysis of limiting oxygen index (LOI), vertical burning and cone calorimetry (CONE) compared to the MF resin laminate. In addition, the flame retardancy of laminates was further enhanced when prepared with core materials of aramid paper. Scanning electron microscopy analysis of residue char after CONE tests showed that the AP-core laminate formed a dense and stable char layer compared with the loose char layer of the PPNF-core laminate. This study shows a new direction to develop sustainable high-performance flame retardant laminates for commercial decoration application.

Graphical abstract: Modified melamine-formaldehyde resins improve tensile strength along with antifouling and flame retardancy in impregnation of cellulose paper

Back to tab navigation

Supplementary files

Article information


Submitted
24 Sep 2019
Accepted
04 Nov 2019
First published
12 Nov 2019

This article is Open Access

RSC Adv., 2019,9, 36788-36795
Article type
Paper

Modified melamine-formaldehyde resins improve tensile strength along with antifouling and flame retardancy in impregnation of cellulose paper

X. Chen, S. Afreen, X. Yu, C. Dong and Q. Kong, RSC Adv., 2019, 9, 36788
DOI: 10.1039/C9RA07743J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements