Jump to main content
Jump to site search

Issue 50, 2019, Issue in Progress
Previous Article Next Article

Improved ferroelectric properties and band-gap tuning in BiFeO3 films via substitution of Mn

Author affiliations

Abstract

Multiferroic BiFe1−xMnxO3 (x = 0, 0.04, 0.08, 0.12) films have been prepared on Pt/Ti/SiO2/Si and ITO/glass substrates via the solution-gelation technique. The impacts of Mn doping of BFO thin films on the structure, morphology, leakage current, ferroelectric properties and optical band gap have been systematic investigated. From the XRD patterns, all samples match well with the perovskite structure without an impurity phase and the thin films exhibit dense and smooth microstructure. A leakage current density of 1.10 × 10−6 A cm−2 which is about four orders of magnitude lower than that of pure BiFeO3 was observed for the 8% Mn doped BFO thin film at an external electric field <150 kV cm−1. An increase in the remnant polarization with Mn substitution was observed, with a maximum value of ∼19 μC cm−2 for the 8% Mn-substituted film. Moreover, optical absorption spectra indicate that the doping of Mn has an effect on the energy band structure. Compared with pure BiFeO3, Mn doped thin films present an intense red shift as shown in the UV-visible diffuse absorption together with the decreased direct and indirect optical band gaps. In addition, this work gives insight into the relationship between ferroelectric remnant polarization and band-gap and finds that the optical band gap decreases with the increase of residual polarization.

Graphical abstract: Improved ferroelectric properties and band-gap tuning in BiFeO3 films via substitution of Mn

Back to tab navigation

Article information


Submitted
31 Jul 2019
Accepted
05 Sep 2019
First published
17 Sep 2019

This article is Open Access

RSC Adv., 2019,9, 29238-29245
Article type
Paper

Improved ferroelectric properties and band-gap tuning in BiFeO3 films via substitution of Mn

S. Yang, G. Ma, L. Xu, C. Deng and X. Wang, RSC Adv., 2019, 9, 29238
DOI: 10.1039/C9RA05914H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements