Jump to main content
Jump to site search

Issue 15, 2019, Issue in Progress
Previous Article Next Article

Hybrid-functional calculations of electronic structure and phase stability of MO (M = Zn, Cd, Be, Mg, Ca, Sr, Ba) and related ternary alloy MxZn1−xO

Author affiliations

Abstract

Using the hybrid exchange–correlation functional within the density-functional theory, we have systematically investigated the structural and electronic properties of MO (M = Be, Mg, Ca, Sr, Ba, Zn, Cd) in binary rock salt (B1), zinc-blende (B3) and wurtzite (B4) phases, including the structural parameters, bulk moduli, band gaps and deformation potentials. Our results agree well with the experimental data and other theoretical results, and give a better understanding of the relationship between the geometric and electronic structure. After calculating the band alignment, we find that in both the B1 and B3 structures, the valence band maximum (VBM) has an obvious decrease from BeO to MgO to CaO, then it goes up from SrO to BaO to ZnO to CdO. Moreover, the properties of the ternary alloys MxZn1−xO were studied through the application of the special quasi-random structure method. The critical value of the ZnO composition for the transition from the B3 structure to the B1 structure gradually increases from (Ca, Zn)O to (Mg, Zn)O to (Sr, Zn)O to (Ba, Zn)O to (Cd, Zn)O, indicating that (Ca, Zn)O can exist in the B3 structure with the lowest ZnO composition. These results provide a good guideline for the accessible phase space in these alloy systems.

Graphical abstract: Hybrid-functional calculations of electronic structure and phase stability of MO (M = Zn, Cd, Be, Mg, Ca, Sr, Ba) and related ternary alloy MxZn1−xO

Back to tab navigation

Publication details

The article was received on 15 Jan 2019, accepted on 08 Mar 2019 and first published on 13 Mar 2019


Article type: Paper
DOI: 10.1039/C9RA00362B
RSC Adv., 2019,9, 8507-8514
  • Open access: Creative Commons BY license
  •   Request permissions

    Hybrid-functional calculations of electronic structure and phase stability of MO (M = Zn, Cd, Be, Mg, Ca, Sr, Ba) and related ternary alloy MxZn1−xO

    J. Yu, M. Zhang, Z. Zhang, S. Wang and Y. Wu, RSC Adv., 2019, 9, 8507
    DOI: 10.1039/C9RA00362B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements